三维激光扫描在密炼机转子生产制造中 的应用

陈兴忠,金卿蕾,秦恩臣,刘雄伟

(益阳橡胶塑料机械集团有限公司,湖南 益阳 413000)

摘要:三维激光扫描技术具有高效率、高精度、无损等优势被应用于各行各业。转子作为密炼机核心的零部件之一,生产制造出合格的转子是重中之重,应用三维激光扫描技术辅助转子加工进一步提高质量。

关键词:三维激光扫描;密炼机;转子;对比分析;总容积

中图分类号: TO330.493

文献标识码:B

文章编号:1009-797X(2025)03-0055-09 DOI:10.13520/j.cnki.rpte.2025.03.013

0 引言

如今,三维激光扫描技术已经成功的在文物保护、城市建筑测量、地形测绘、采矿业、变形监测、工厂、大型结构、管道设计、飞机船舶制造、公路铁路建设、隧道工程、桥梁改建等领域里应用。三维激光扫描仪,其扫描结果直接显示为点云(pointcloud 意思为无数的点以测量的规则在计算机里呈现物体的结果),利用三维激光扫描技术获取的空间点云数据,可快速建立结构复杂、不规则的场景的三维可视化模型,既省时又省力,这种能力是现行的三维建模软件所不可比拟的。

密炼机是橡塑行业中用于塑炼和混炼的关键设备,通常位于橡胶、塑料等生产流程的头道工序。对于轮胎、橡胶制品等生产来说,密炼机的性能直接影响到后续工序的顺利进行和最终产品的质量。随着数控加工技术的迅猛进步,其加工精度实现了质的飞跃,生产效率也实现了大幅度提升,这些显著优势直接促使了产品质量的全面优化与显著提升。把三维扫描技术应用于密炼机转子的生产制造中可以提高其加工精度,从而提升密炼机的性能。

1 密炼机

密炼机(见图1)由主机(机体、转子及支承、 转子密封装置、卸料装置和加料压料装置)、主电机、 减速机、液压站、电控柜、水温柜、润滑系统等组成。

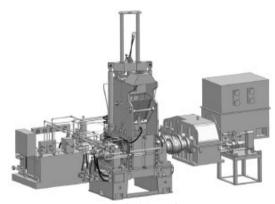


图 1 密炼机示意图

2 转子

转子由合金钢铸造的转子体和长轴装配而成,这种结构具有较高的抗弯曲疲劳强度。为提高转子耐磨性、耐腐蚀性和使用寿命等,需要在转子上与胶料接触的表面堆焊了硬质耐磨合金。转子体表面是由复杂曲面组成,高硬度的硬质耐磨合金加工就成了头号难题。

在过去几十年密炼机的生产制造中,转子表面硬质耐磨合金最终的加工都通过手工打磨,用样板(见图 2)去检测棱的形状。这样做人为因素影响比较严重,非常容易造成误差,一是堆焊的硬质耐磨合金层

2025年 第**51**卷 • **55**•

作者简介:陈兴忠(1994-),男,工程师,本科,主要从 事密炼机的研发设计和公司标准化工作。

厚度可能不均匀,影响转子的耐磨、耐腐蚀和使用寿命;二是转子的体积有误差,从而导致密炼机容积偏差,影响炼胶效果。

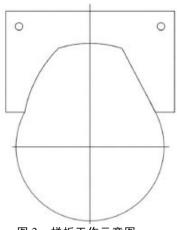


图 2 样板工作示意图

2.1 转子体铸造

铸造是转子生产制造的首道工序,根据密炼机转 子体的设计图纸,设计出精确的铸造模具。模具的设 计需充分考虑转子体的形状、尺寸、壁厚以及铸造工 艺的特点,确保铸造出的转子体符合设计要求。

早期设计转子铸造模具采用的是木制模具,具有成本低廉、灵活性与可塑性强、材料适应性强、环保等优点,耐火性能差、模板制作时间长、不适合大批量生产、易磨损和损坏等也是不能忽视的缺点。长时间使用后木制模具磨损和损坏严重(见图 3),铸造精度就有影响。

图 3 转子木模示意图

应用三维激光扫描技术,扫描转子体木模得到点云数据(见图 4),把激光扫描得到的点云数据和转子体粗加工三维设计模型(见图 5)导入对比分析软件,可以得到转子体木模和三维设计模型对比分析的数据

(见图 6、表 1),每个区域的颜色变化和每个点的具体偏差数值都能看到,通过这份数据报告结合铸造余量就可以对木模进行修复。

图 4 转子体木模点云数据示意图

图 5 转子体粗加工三维设计模型示意图

2.2 转子体粗加工

转子体从铸造完成后,表面留有加工余量不是堆焊硬质耐磨合金前的最终设计尺寸,需要对其进行粗加工。早期采用人工打磨的方式去除多余加工余量,再用样板检测是否合格,效率低、精度差、对人体不健康、也不环保。如今,采用数控加工技术加工转子体毛坯,精度高、效率高。

应用三维激光扫描技术去扫描转子体粗加工前的点云数据(见图 7),转子体粗加工后的点云数据(如图 8),把扫描得到的点云数据和转子体粗加工三维设计模型(见图 5)导入对比分析软件,可以得到转子体粗加工前后和三维设计模型对比分析的数据(见图 9、表 2 和图 10、表 3),每个区域的颜色变化和每个点的具体偏差数值都能得到。

通过转子体粗加工前对比分析数据报告就可以去修复现有转子体保证有加工余量,或者调整后续转子体铸造余量(增加或减少);通过转子体粗加工后对比分析数据报告能检测转子体粗加工是否合格,能不能达到堆焊硬质耐磨合金前的设计要求,为后续堆焊硬

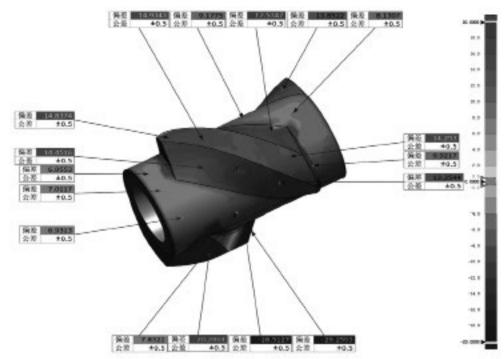


图 6 对比分析结果示意图

表 1 对比分析数据

名称	公差	偏差	参考位置					
	公左		X	Y	Z	X	Y	Z
CMP1	±0.5	6.955 3	280	-59.997 6	157.989 8	280	-62.575 8	164.449 5
CMP2	± 0.5	6.931 3	260	119.982	118.989 5	260	124.942	123.831 1
CMP3	± 0.5	14.451 6	119.999 9	19.999 9	190.914	124.850 8	26.3396	202.960 7
CMP4	± 0.5	14.934 3	80.000 1	-59.997	224.095 7	79.901 5	-63.9169	238.506 1
CMP5	± 0.5	9.921 7	-213.912	139.998 2	94.670 3	-213.931	148.223 4	100.218 9
CMP6	± 0.5	14.253	-140	119.993 6	198.543 3	-140.094	127.330 6	210.762 4
CMP7	± 0.5	8.130 7	-240	-39.9955	164.183 7	-240	-41.8321	172.104 2
CMP8	± 0.5	13.852 2	-280.003	-179.993	68.307 2	-275.596	-189.396	77.475 5
CMP9	± 0.5	7.832 2	80	159.979 6	54.423 9	80	167.42	56.869 9
CMP10	± 0.5	13.254 4	-80.0019	159.995 8	131.282 3	-74.731	171.777 4	134.297 5
CMP11	± 0.5	9.177 5	-100	-119.982	118.989 5	-100	-126.549	125.400 1
CMP12	± 0.5	14.837 4	160	-139.996	184.992	159.903	-148.888	196.869 7
CMP13	± 0.5	20.286 4	201.080 8	191.748 1	-91.748	211.117 9	208.971 8	-87.9879
CMP14	± 0.5	7.0117	280	19.996 7	167.789	280	20.793 8	174.755 2
CMP15	± 0.5	17.534 7	-140	$-0.000\ 2$	180.222 3	-145.239	-6.049	195.824 4
CMP16	± 0.5	$-28.512\ 7$	60	180	-118.872	76.4333	165.778 5	-137.33
CMP17	±0.5	$-29.259\ 3$	29.356 4	160	-130.745	46.22	145.406 1	-149.686

图 7 转子体粗加工前点云数据示意图

图 8 转子体粗加工后点云数据示意图

2025年 第51卷

 名称	 公差	偏差	参考位置					
一例	公左		X	Y	Z	X	Y	Z
CMP1	±0.5	5.782 5	-99.979 6	-252.903	-500	-102.058	-258.299	-500
CMP2	± 0.5	4.544 2	-49.9993	-322.279	-250.001	$-48.821\ 6$	-326.306	-251.745
CMP3	± 0.5	7.411 3	-199.986	-327.782	-150	-203.895	-334.078	-149.935
CMP4	± 0.5	5.288 1	-49.997 3	-327.274	99.997 8	$-53.208\ 7$	-330.612	102.549 4
CMP5	± 0.5	6.289 3	$-99.979\ 6$	-252.903	350	-102.24	-258.772	350
CMP6	± 0.5	4.781 4	-350.003	-73.5331	499.997 9	-353.224	-76.435	497.980 6
CMP7	± 0.5	5.812	-249.94	-107.151	200	-255.291	-109.42	200
CMP8	± 0.5	6.798 5	199.958 9	-184.318	450	205.001	-188.878	450
CMP9	± 0.5	6.498 9	249.980 1	-107.167	-450	255.905 3	-109.837	-450
CMP10	± 0.5	6.373 6	249.980 1	-107.167	-200	255.791	-109.785	-200
CMP11	± 0.5	7.672 4	300	161.465 7	-150	303.345	156.662 7	-145.039
CMP12	± 0.5	8.169 9	249.993 2	-291.464	250.000 1	255.392 3	-297.595	249.928 6
CMP13	± 0.5	5.060 5	199.982 8	-275.205	50.008 6	204.101 3	-277.315	47.960 3
CMP14	± 0.5	6.365 1	249.980 1	107.1672	100	255.783 3	109.781 9	100
CMP15	±0.5	3.152 7	300.006 3	137.5622	-350.003	302.809 8	137.072	-351.36

表 2 转子体粗加工前对比分析数据

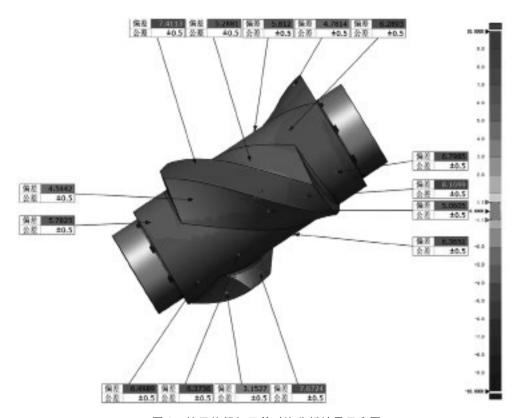


图 9 转子体粗加工前对比分析结果示意图

质耐磨合金打好基础。

2.3 转子体精加工

转子体粗加工完成后需要采用自动焊接机器人堆焊硬质耐磨合金,堆焊达到设计的硬质耐磨合金厚度后需进行精加工,过去都采用人工打磨合金表面,样板检测棱的形状是否合格。人工打磨模式影响变量太多,不能保证转子体表面硬质耐磨合金层的厚度均匀性和一致性,在后续转子的生产使用过程中可能存在不稳定影响因素。

应用三维激光扫描技术去扫描转子体精加工前的点云数据(见图 11),转子体精加工后的点云数据(见图 12),把扫描得到的点云数据和转子体精加工三维设计模型(见图 13)导入对比分析软件,可以得到转子体精加工前后和三维设计模型对比分析的数据(见图 14、表 4 和图 15、表 5),每个区域的颜色变化和每个点的具体偏差数值都能得到。

通过转子体精加工前对比分析数据报告就可以去修复现有转子体的堆焊硬质合金层保证有加工余量,

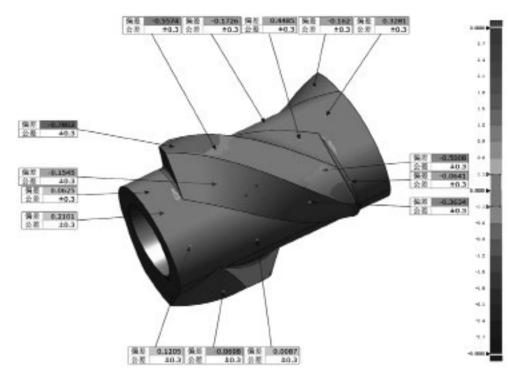


图 10 转子体粗加工后对比分析结果示意图

表3	转子体粗加丁后对比分析数据

名称	公差	偏差				测试位置		
	公左		X	Y	Z	X	Y	Z
CMP1	±0.3	0.062 5	280	-59.997 6	157.989 8	280	-60.020 7	158.047 8
CMP2	± 0.3	0.120 5	260	119.982	118.989 5	260	120.068 3	119.073 7
CMP3	± 0.3	$-0.154\ 5$	119.999 9	19.999 9	190.914	119.948 1	19.932 1	190.785 2
CMP4	± 0.3	-0.5574	80.000 1	-59.997	224.095 7	80.003 8	-59.8507	223.557 9
CMP5	± 0.3	$-0.064\ 1$	-213.912	139.998 2	94.670 3	-213.912	139.945 1	94.634 4
CMP6	± 0.3	-0.500 8	-140	119.993 6	198.543 3	-139.997	119.735 8	198.114
CMP7	± 0.3	0.328 1	-240	-39.9955	164.183 7	-240	$-40.069\ 6$	164.503 3
CMP8	± 0.3	-0.162	-280.003	-179.993	68.307 2	-280.055	-179.884	68.2
CMP9	± 0.3	0.008 7	80	159.979 6	54.423 9	80	159.987 8	54.426 6
CMP10	± 0.3	$-0.363\ 4$	-80.0019	159.995 8	131.282 3	$-80.146\ 4$	159.672 8	131.199 6
CMP11	± 0.3	$-0.172\ 6$	-100	-119.982	118.989 5	-100	-119.859	118.868 9
CMP12	± 0.3	$-0.780\ 2$	160	-139.996	184.992	160.005 1	-139.529	184.367 5
CMP13	± 0.3	$-0.069\ 8$	201.080 8	191.748 1	-91.748	201.046 3	191.688 9	-91.7609
CMP14	± 0.3	0.210 1	280	19.996 7	167.789	280	20.020 6	167.997 8
CMP15	± 0.3	0.448 5	-140	-0.0002	180.222 3	-140.134	-0.1549	180.621 3

图 11 转子体精加工前点云数据示意图

图 12 转子体精加工后点云数据示意图

2025年 第51卷 · 59 ·

图 13 转子体精加工三维设计模型示意图

或者调整后续转子体堆焊硬质合金厚度(增加或减少);通过转子体精加工后对比分析数据报告能检测转子体精加工是否合格,能不能达到堆焊硬质耐磨合金后的设计要求,为后续转子的顺利安装和密炼机的高效稳定生产运行保驾护航。

3 密炼机总容积检测

3.1 水测法

转子体积对密炼机总容积而言是一个很重要的数据,过去一直采用水测法检测转子体积,检测精度不

图 14 转子体精加工前对比分析结果示意图

表 4 转子体精加工前对比分析数据

ハギ	r i e *	参考位置			测试位置		
公左	1冊左	X	Y	Z	X	Y	Z
±0.5	3.886 5	-99.999	-142.398	-280	-102.163	-145.627	-280
± 0.5	4.374	119.983 2	-125.989	-240	122.953 2	-129.2	-240
± 0.5	2.957 4	-20.002	-206.519	-139.998	-19.117	-209.116	-141.1
± 0.5	3.514 5	$-80.004\ 2$	-172.007	40.002 1	-82.4579	-174.19	41.253 4
± 0.5	4.276 1	-139.975	-103.315	160	-143.446	-105.813	160
± 0.5	3.695 5	-199.991	-16.33	220.003 6	-203.062	-17.9844	218.784
± 0.5	3.573 6	99.975 2	-142.365	260	102.030 4	-145.288	260
± 0.5	4.149 8	173.304 8	-15.5734	-36.855	177.428 8	-16.0348	-36.855
± 0.5	3.561 1	199.994 1	55.6891	-179.997	203.02	54.7078	-181.598
± 0.5	4.119	-156.988	-75.04	-20	-160.715	-76.794	$-19.985\ 2$
± 0.5	$-0.613\ 1$	-139.991	-194.923	-160	-139.632	-194.426	-160.006
± 0.5	$-0.080\ 2$	139.988 2	-194.919	140.000 2	139.941 3	-194.854	140.001
± 0.5	3.166 6	139.994	-137.996	20.002 2	142.751 3	-139.183	18.994 3
± 0.5	3.225 3	0.000 4	-173.973	-300	$-0.035\ 6$	-177.198	-300
	± 0.5	±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	接	接	大学学校報告報告 大学学校 大学校 大学校	数字

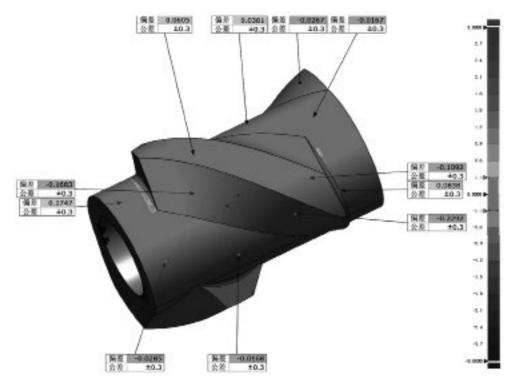


图 15 转子体精加工后对比分析结果示意图

名称	公差	偏差	参考位置			测试位置		
	公左		X	Y	Z	X	Y	Z
CMP1	± 0.3	0.174 7	280	$-59.997\ 6$	157.989 8	280	$-60.062\ 3$	158.152
CMP2	± 0.3	$-0.028\ 5$	260	119.982	118.989 5	260	119.961 6	118.969 6
CMP3	± 0.3	$-0.168\ 3$	119.999 9	19.999 9	190.914	119.943 5	19.926 1	190.773 7
CMP4	± 0.3	0.060 5	80.000 1	-59.997	224.095 7	79.999 7	-60.0129	224.154 1
CMP5	± 0.3	0.083 8	-213.912	139.998 2	94.670 3	-213.912	140.067 7	94.717 2
CMP6	± 0.3	-0.1092	-140	119.993 6	198.543 3	-139.999	119.937 4	198.449 7
CMP7	± 0.3	-0.0167	-240	-39.9955	164.183 7	-240	$-39.991\ 7$	164.167 4
CMP8	± 0.3	$-0.026\ 7$	-280.003	-179.993	68.307 2	-280.012	-179.975	68.289 5
CMP9	± 0.3	$-0.016\ 8$	80	159.979 6	54.423 9	80	159.963 6	54.418 6
CMP10	± 0.3	$-0.229\ 2$	-80.0019	159.995 8	131.282 3	-80.093	159.792 1	131.230 2
CMP11	± 0.3	0.0381	-100	-119.982	118.989 5	-100	-120.009	119.016 1

表 5 转子体精加工后对比分析数据

是很高,误差比较大。检测方法如下:

- (1) 准备检测仪器一台台秤, 一个能容纳转子 工作部分体积的圆桶,一个能容纳圆桶的水槽(见图 16)
- (2) 圆桶注满水后,将转子一端浸人水中,直至 转子工作部分另一端面与水平面平齐,同时用水槽接 从桶中溢出的水,在台秤上称质量,换算出体积,再减 去浸入水中非工作部分的体积,即为转子工作部分的 体积。
 - (3) 用(1) 方法测出另一个转子工作部分的体积。
- (4) 根据密炼室图样尺寸,计算出密炼室的空间 体积,减去两个转子工作部分的体积,即为密炼室的 总容积。

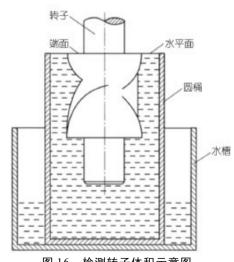


图 16 检测转子体积示意图

2025年 第51卷 · 61 ·

橡塑技术与装备 HINA R&P TECHNOLOGY AND EQUIPMENT

3.2 三维激光扫描法

目前,引入激光扫描技术检测转子体积,从而计算出密炼机总容积,检测精度得到非常大的提升,检测误差可以忽略不计。

准备一台三维激光扫描仪,把转子工作部分外形扫描成点云数据(见图 17),把点云数据导入配套软件就可得到转子容积。然后根据密炼室图样尺寸,计算出密炼室的空间体积,减去两个转子工作部分的体积,即为密炼室的总容积。

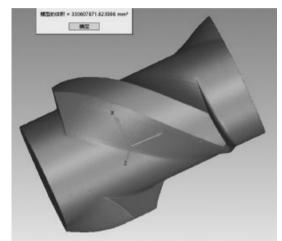


图 17 检测转子体积点云数据示意图

4 结论

引入三维激光扫描技术到密炼机转子生产制造中 是很有价值的,包括提高检测精度与效率、优化生产 流程、质量控制与检测等。

4.1 提高检测精度与效率

非接触式测量:三维激光扫描技术采用非接触式

测量方式,可以在不对转子表面造成磨损或破坏的前提下,获取高精度的三维数据。这种方式避免了传统接触式测量工具可能带来的误差和损伤,提高了测量的准确性。

快速数据采集:三维激光扫描仪能够快速采集转子的三维点云数据,大大提高了数据采集的效率。这对于需要频繁进行质量检测的生产环境尤为重要,可以显著缩短生产周期。

4.2 优化生产流程

毛坯制造:在毛坯制造阶段,三维激光扫描可以快速、准确地检测毛坯的尺寸和形状,确保毛坯件符合设计要求。这有助于减少因毛坯不合格而导致的返工和浪费。

精密加工:在精密加工阶段,三维激光扫描可以实时监控加工过程,确保加工精度和一致性。同时,通过扫描数据与设计模型的对比,可以及时发现并纠正加工误差,提高产品质量。

4.3 质量控制与检测

全尺寸测量:三维激光扫描技术能够实现转子的全尺寸测量,包括复杂曲面和难以触及的部位。这种全面的测量方式有助于确保转子在各个方向上的尺寸都符合设计要求,提高产品的质量稳定性。

数据分析与报告:扫描数据可以导入到专业的检测软件中进行分析,生成详细的检测报告。这些报告可以直观地反映出转子与设计图纸的偏差情况,为质量控制提供可靠的数据支持。

这些优势将有助于企业提高产品质量、降低生产 成本并增强市场竞争力。

Application of 3D laser scanning in the production and manufacturing of internal mixer rotors

Chen Xingzhong, Jin Qinglei, Qin Enchen, Liu Xiongwei

(Yiyang Rubber and Plastic Machinery Group Co. LTD., Yiyang 413000, Hunan, China)

Abstract: 3D laser scanning technology has been widely used in multiple industries due to its advantages of high efficiency, high precision, and non-destructive testing. As one of the core components of the internal mixer, the quality of its production and manufacturing is crucial. By applying 3D laser scanning technology to assist rotor processing, product quality can be further improved.

Key words: 3D laser scanning; internal mixer; rotor; comparative analysis; total volume

(R-03)